Math 2202
Unit 1
surface Areas

Systems of Measurement

The Metric System.

- to measure length, we use the Meter
- easier to convert units because everything is built on 10's

most used units: km kilometer 1000 meters M meter

cm centimeter 1/100 of a meter mm millimeter 1/1000 of a meter

The Imperial System

- the older system
- created mostly from reference tools (hands, fingers, etc.)
- there is no easy rule for converting, you have to use something different for each unit.

Pythagorean Theorem

$$a + b = c$$

- the Pythagorean Theorem can be always used to find the missing 3rd side of a right angle triangle

Sept 6/13

Math 2202

V. Geometry → Surface Area

Geometry is the study of the Real world; its shapes, angles, measurements and dimensions. Three-D shapes have 3 dimensions and are measured by...

- 1) Surface Area
 - the sum of all the areas of each side
 - measures the outside (walls) of a shape
- 2) Volume
 - the total space inside a 3-D shape
 - measures how much space it can hold

Basic Shapes in 3D Geometry are...

First we need to review the formulas for 2D shapes: Area and Perimeter

h

A= 2 bh

P -> Circumference C = 2 xr or rd

Nets of 3D shapes.

- -All 3D shapes will have a surface area, equal to how much material is needed to make the object.
- we can see the surface area better sometimes if we break the shape apart and lay the sides down flat.
- The 'pattern' we get is called the net for the object.

- there is more than one way to arrange the net of an object

- each one is a proper net, as long as it can be folded to make the original shape

Surface Area of Rectangular Prisms

Calculate the Area of Each Side	# of Matching Faces	Total Area.

Note: to help calculate total Surface Area, you could start by drawing out the net so you can keep track of each side.

Surface Area of Triangular Prisms.

→ Special case prisms (equilateral triangles) are easy because the rectangles (sides) are the same.

→ most triangle Prisms are scalene (all 3 sides different.) It is best to use a net diagram for these because you have to see each side seperately.

Classwork pg 9

$$\frac{1}{3}A = \frac{b \times h}{2}$$

$$= \frac{(32)(12)}{2}$$

$$= 192 \text{ m}^{2}$$

3. P2 Its

Sa sides =
$$(6)(10) = 60 \times 2 = 120$$

 197.5 m^2

Surface Area of Cylinders

pg 15. Estimating Surface Area

Some jobs and calculations need very precise measurements, where others just need to be close. When 'just close' will do we can save a lot of time by doing an estimation. Just remember: when estimating, it is usually better to round up than down.

Ex:	Exact	Estimate
	building a house machine parts Surgeon furniture scale model	tree house rough plans painting a house Stone Carving

An estimate needs experience and a good reference. You should get used to using your "built in" references.

body part	measurement
thumb width foot 1 hand width 2 steps arm span	1 inch 12 inches 6 inches 1 yard (1 meter) 6 feet (2 meters)

30)
$$= 3(6 \times 1) + 2(6 \times 1) + 2(10 \times 1)$$

 $= 3(6 \times 140) + 2(70 \times 40) + 2(140 \times 40)$
 $= 3(9800) + 2(3800) + 2(5600)$
 $= 19600 + 5600 + 11200$
 $= 36400 \text{ cm}^2$

Review of Formulas SA.

Rect Prism = $2(b \times h)_{+} 2(b \times l)_{+} 2(l \times h)$ Triangle Prism = $2(\frac{b \times h}{2})_{+} (l \times w)_{+} (l \times w)_{+} (l \times w)_{+} (l \times w)_{+}$ Square

Pyramids = $(l \times w)_{+} + 4(\frac{b \times h}{2})_{+} *h = slant height$ Cylinders = $2 \times r^{2}_{+} + 2 \times rh_{-}$ Lorders $= 2 \times r^{2}_{-} + 2 \times rh_{-}$

Surface Area of a Cone.

$$\frac{S=10}{S=10}$$
Ex: $SA = \frac{\chi r^2}{c_{1}r_{c}l_{e}} + \frac{\chi r_{S}}{\chi r_{d}e_{S}}$

$$= \chi(6)^2 + \chi(6)\chi(6)$$

$$= 113 + 188.4$$

? What if you don't have the Slant height!

* Use Pythagorean Th. to find s.

$$a^{2} + b^{2} = c^{2}$$
 $(12)^{2} + (5)^{2} = c^{2}$
 $(14)^{2} + (5)^{2} = c^{2}$
 $(16)^{2} = (6)^{2}$
 $(16)^{2} = (6)^{2}$
 $(16)^{2} = (6)^{2}$

Examples Cones : Spheres Pg 45, 47-49

#4. Water on the earth.

Find SA × .71 = 14763, 709 m

Hyrr

477 (4000)

201061930

